Commercial tea bags release millions of microplastics, entering human intestinal cells
Medical Xpress / Autonomous University of Barcelona / Chemosphere ^ | Dec. 20, 2024
Posted on 12/25/2024 5:43:47 PM PST by ConservativeMind
Research has characterized how polymer-based commercial tea bags release millions of nanoplastics and microplastics when infused. The study shows for the first time the capacity of these particles to be absorbed by human intestinal cells, and are thus able to reach the bloodstream and spread throughout the body.
Plastic waste pollution represents a critical environmental challenge with increasing implications for the well-being and health of future generations. Food packaging is a major source of micro and nanoplastic (MNPLs) contamination and inhalation and ingestion is the main route of human exposure.
A study has successfully obtained and characterized micro and nanoplastics derived from several types of commercially available tea bags.
The UAB researchers observed that when these tea bags are used to prepare an infusion, huge amounts of nano-sized particles and nanofilamentous structures are released, which is an important source of exposure to MNPLs.
The tea bags used for the research were made from the polymers nylon-6, polypropylene and cellulose. The study shows that, when brewing tea, polypropylene releases approximately 1.2 billion particles per milliliter, with an average size of 136.7 nanometers; cellulose releases about 135 million particles per milliliter, with an average size of 244 nanometers; while nylon-6 releases 8.18 million particles per milliliter, with an average size of 138.4 nanometers.
The particles were stained and exposed for the first time to different types of human intestinal cells to assess their interaction and possible cellular internalization. The biological interaction experiments showed that mucus-producing intestinal cells had the highest uptake of micro and nanoplastics, with the particles even entering the cell nucleus that houses the genetic material.
The result suggests a key role for intestinal mucus in the uptake of these pollutant particles and underscores the need for research into the effects that chronic exposure can have on human health.
(Excerpt) Read more at medicalxpress.com ...
TOPICS: Health/Medicine
KEYWORDS:
Click here: to donate by Credit Card
Or here: to donate by PayPal
Or by mail to: Free Republic, LLC - PO Box 9771 - Fresno, CA 93794
Thank you very much and God bless you.
The study used scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy (ATR-FTIR), dynamic light scattering (DLS), laser Doppler velocimetry (LDV), and nanoparticle tracking analysis (NTA) to identify the particles.
The important quote:
“The tea bags used for the research were made from the polymers nylon-6, polypropylene and cellulose. The study shows that, when brewing tea, polypropylene releases approximately 1.2 billion particles per milliliter, with an average size of 136.7 nanometers; cellulose releases about 135 million particles per milliliter, with an average size of 244 nanometers; while nylon-6 releases 8.18 million particles per milliliter, with an average size of 138.4 nanometers.“
It looks best to use loose leaf teas infusers. We are cutting open plastic tea bags and putting the contents into infusers, but we hadn’t realized the polymer used to seal paper tea bags could release so many particles, under the influence of heat and liquid.
I guess we will start infusing our paper tea bags contents out of the bags and keep up our other loose leaf tea use.
Researchers are finding these particles piling up in some organs. We still don’t understand what harm they cause, but they shouldn’t be there.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson